Course Study with CSC321
[2021.01.09]
Topic
: Neural Network quick review to Gradient vanishing & exploding problem
Notes
:
- [https://drive.google.com/file/d/15-n3O7gaMyRTqq5-WC9hfms1Xtea2Jp/view?usp=sharing](https://drive.google.com/file/d/15-n3O7gaMyRTqq5-WC9hfms1Xtea2Jp/view?usp=sharing)
Links
:
- https://wikidocs.net/61375
- https://m.blog.naver.com/PostView.nhn?blogId=pshkhh&logNo=221203426679&proxyReferer=https:%2F%2Fwww.google.com%2Fhttps://brunch.co.kr/@chris-song/39
- https://t-lab.tistory.com/14
- https://aikorea.org/blog/rnn-tutorial-3/
- https://velog.io/@dscwinterstudy/%EB%B0%91%EB%B0%94%EB%8B%A5%EB%B6%80%ED%84%B0-%EC%8B%9C%EC%9E%91%ED%95%98%EB%8A%94-%EB%94%A5%EB%9F%AC%EB%8B%9D2-5%EC%9E%A5-gnk6bhirc3
- https://m.blog.naver.com/worb1605/221187949828
- https://ganghee-lee.tistory.com/30
- https://heehehe-ds.tistory.com/entry/Deep-Learning-%EC%86%90%EC%8B%A4%ED%95%A8%EC%88%98loss-function-%EC%98%B5%ED%8B%B0%EB%A7%88%EC%9D%B4%EC%A0%80optimizer
- https://ydseo.tistory.com/41
- https://cs224d.stanford.edu/notebooks/vanishing_grad_example.html
- https://simonjisu.github.io/numpyseries/2018/03/14/rnnlstm2.html
- https://mmuratarat.github.io/2019-02-07/bptt-of-rnn
- https://ratsgo.github.io/natural%20language%20processing/2017/03/09/rnnlstm/
Next
: 2021.01.16 9:30 PM KST
- http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/
- Lecture 5: Multilayer Perceptrons (박희원) , Lecture 6: Backpropagation (이동재)
[2021.01.16]
Topic
: Lecture 5: Multilayer Perceptrons (박희원) , Lecture 6: Backpropagation (이동재)
Notes
:
- https://drive.google.com/file/d/1p446nFckVgzjhYFzZ7EABXLRX9Mq3QLN/view?usp=sharing (희원)
- https://drive.google.com/file/d/1BydNGPxWEwRxiJobvu5dPq88xhRO2ypU/view?usp=sharing (동재)
Links
:
Multilayer Perceptrons
- http://hleecaster.com/ml-perceptron-concept/
- http://blog.naver.com/PostView.nhn?blogId=apr407&logNo=221238611771&parentCategoryNo=&categoryNo=55&viewDate=&isShowPopularPosts=true&from=search
- https://untitledtblog.tistory.com/27
- https://choosunsick.github.io/post/neural_network_intro/
- http://www.datamarket.kr/xe/board_LCmL04/26245
Backpropagation
- https://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/readings/L06%20Backpropagation.pdf
- https://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/slides/lec8a.pdf
- https://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/slides/lec8b.pdf
Next
: 2021.01.23 9:00 PM KST
- http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/
- Lecture 7: Optimization (이찬주)
[2021.01.23]
Topic
: Lecture 7: Optimization 1st part (이찬주)
Notes
:
Links
:
- https://hyunw.kim/blog/2017/11/01/Optimization.html
- Gradient Descent Optimization Algorithms 정리 , (shuuki4.github.io)
Next
: 2021.01.30 9:00 PM KST
- http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/
- Lecture 7: Optimization (from Momentum 민채정)
[2021.01.30]
Topic
: Lecture 7: Optimization (2nd , 민채정)
Notes
: 업로드 예정
Links
:
- Derivative of Logistic Regression
- what is convex function?
- cost-function
- https://www.slideshare.net/hyeseunglee6/ch6-75888743?from_action=save
- https://sacko.tistory.com/42https://twinw.tistory.com/247
Next
: 2021.02.06 9:00 PM KST
- http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/
- Lecture 9: Generalization 1st part ( ~weight decay , 이동재)
- 순서 고정 :
이동재
-박희원
-이찬주
-민채정
[2021.02.06]
Topic
: Lecture 9: Generalization (이동재)
Notes
:
Links
:
- https://blog.naver.com/mykepzzang/220837959160 (베이즈 에러 도출 과정 확률과 표준편차 참고자료)
- https://warm-uk.tistory.com/44 (BottleNeck 층을 활용한 Inception)
- https://munjeongkang.github.io/ANN2/ (model capacity)
- https://light-tree.tistory.com/216 (Weight decay , L1&L2 regularizer)
- https://hyeonnii.tistory.com/353 (Bayes Error)
Next
: 2021.02.20 9:00 PM KST
- http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/
- Lecture 11: Convolutional Networks (박희원)
[2021.02.20]
Topic
: Lecture 11: Convolutional Networks (박희원)
Notes
:
Links
:
- https://untitledtblog.tistory.com/150
- https://underflow101.tistory.com/44
- https://underflow101.tistory.com/25
- https://excelsior-cjh.tistory.com/180
- https://dsbook.tistory.com/59
- https://nittaku.tistory.com/264
Next
: 2021.02.27 9:00 PM KST
- http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/
- Lecture 12: Image Classification (이찬주)
1
2
3
4
1.두 데이터 셋 간단 소개 (MNIST , Caltech101)
2.Image NET 대회 간단 소개
3.Conv net 사이즈 구하는 방법 (표기 방법)
4.LeNET , AlexNET , GoogleNET , (LeNET , AlexNET 은 너무 깊게할 필요 없고 GoogleNET은 fully convolutional 이라는 의미가 뭔지)
[2021.02.27]
Topic
: Lecture 12: Image Classification (이찬주) , CNN misc part (이동재)
Notes
:
- https://drive.google.com/file/d/1GYaiD1fUVTdfW4P82oZz8oK5EJTm8xgX/view?usp=sharing (이찬주)
- https://drive.google.com/file/d/1npGyII1IWSrQQN_LGjtjK7RtgibJFvX-/view?usp=sharing (이동재)
Links
:
- https://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/slides/lec12.pdf (Lecture 12 slide)
- https://yjjo.tistory.com/8 (start of CNN , concept of receptive field , how to calculate Conv. net size)
- https://bskyvision.com/421 (all about AlexNet : info-share , ReLU , local response normalization)
- https://bskyvision.com/422 (what is top-5 , top-1 error ?)
Next
: 2021.03.06 9:00 PM KST
- https://m.blog.naver.com/laonple/220710707354 (라온피플)
- Special Lecture : Inception , VGG Net , Res Net (이동재 , 민채정)
Google Net (이동재)
- 1X1 Convolution
- Inception module (different kernel size , naive & advanced)
- global average pooling
- auxilary classifier
VGG Net , Res Net (민채정)
- important features of vgg net ( diff between 16 & 19 ?)
- concept of skip connection from Res Net
- R-CNN , Fast R-CNN , Faster R-CNN 은 이번 파트 X
[2021.03.06]
Topic
: Lecture 12.3: GooLeNet (이동재)
Notes
:
Links
:
- https://blog.naver.com/laonple/220686328027 (GooLeNet Lecture Note 1~5)
- https://bskyvision.com/539 (Inception V1 soft review)
- https://89douner.tistory.com/62 (concatenation in Inception module)
- https://jetsonaicar.tistory.com/16 (Global Average Pooling , explained)
- https://lv99.tistory.com/21 (1X1 Conv. layer , explained)
Next
: 2021.03.13 9:00 PM KST
Special Lecture : VGG Net , Res Net (민채정)
- https://blog.naver.com/laonple/220738560542 (VGG Net [1] ~ VGG Net [2])
- https://blog.naver.com/laonple/220761052425 (Res Net [1] ~ Res Net [3])
Will Cover
VGG Net : using only 3X3 kernel ? (what is factorizing colvolution filter ?)
VGG Net : how to deal with gradient vanish/exploding problem (pre-trained kernel initializing)
VGG Net : technique on how-to train/test dataset (scale jittering) <- 어려운 개념이니 간단하게만
Rest Net : what is residual learning? ( Shortcut-connection? Identity mapping?)
Rest Net : what features resnet team took from VGG? (common vs. diff)
Rest Net : BottleNeck Layer (only for models with layers>50)
Rest Net : other experiment with CIFAR dataset (going for 1000 layers)
[2021.03.13]
Topic
: Lecture 12.4: VGG , ResNet (민채정,이동재)
Notes
:
Links
:
- https://blog.naver.com/laonple/220710707354 (VGG : Conv. Factorizing)
- https://brunch.co.kr/@kmbmjn95/37 (ResNet : how ‘residual’ idea came up)
- https://www.stand-firm-peter.me/2020/09/26/resnet/ (ResNet : 최강 자료1. 모든 설명 다 있음)
- https://www.stand-firm-peter.me/2020/09/30/resnet_2/ (ResNet : 최강 자료2. 모든 설명 다 있음)
- https://ratsgo.github.io/deep%20learning/2017/10/09/CNNs/ (ResNet : DenseNet 언급)
Next
: 2021.03.20 9:00 PM KST
Object Detection : R-CNN , SPPNET (Hayden)
https://blog.naver.com/laonple/220731472214 (GooLeNet [6])
Will Cover
- Object Classification VS. Object Detection ?
- Bounding Box , mAP , IOU
- What is R-CNN ?
- SIFT , HOG
- Selective search
- How Berkeley team applied R-CNN ?
- PASCAL VOL
- fine-tuning
- Limits of R-CNN & How SPPNet came up
- dealing with fixed input size
- how many crops/warps
- 순서 변경 :
이동재
-민채정
-박희원
-이찬주
-김진원
[2021.03.20]
Topic
: Lecture 13: Object Detection, R-CNN & SPPNET (Hayden)
Notes
:
Links
:
- https://woosikyang.github.io/fast-rcnn.html
- https://nuggy875.tistory.com/21
- https://ganghee-lee.tistory.com/35
- https://blog.naver.com/PostView.nhn?blogId=isu112600&logNo=221583808984
- https://woosikyang.github.io/fast-rcnn.html
Next
: 2021.03.27 9:00 PM KST
- Object Detection : R-CNN details (Chanju, James)
- https://blog.naver.com/laonple/220731472214 ( (GooLeNet [6])
Will Cover
- R-CNN : Background
- Computer Vision , selective search , SIFT , HOG , DPM
- R-CNN : Architecture
- 3-modules
- R-CNN : How to test ? (detect , forward)
- NMS
- R-CNN : How to evaluate?
- mAP , different metrics
- R-CNN : How to train?
- different IOU threshold
- Bbox regressor understanding
- R-CNN : Limits
[2021.03.27]
Topic
: Lecture 13.2: Object Detection : R-CNN details (Chanju, James)
Notes
:
Links
:
- https://arxiv.org/pdf/1311.2524.pdf (original r-cnn thesis)
- https://wiserloner.tistory.com/1174 (r-cnn background, selective search details)
- https://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html#model-workflow (hard negative mining)
- https://nuggy875.tistory.com/21 (how to train each modules)
- https://dyndy.tistory.com/275 (NMS)
- https://pacientes.github.io/posts/2021/02/ml_ap_map/ (Confidence score)
- http://blog.naver.com/PostView.nhn?blogId=sogangori&logNo=221224276320 mAP
- https://eehoeskrap.tistory.com/183 (end-to-end)
Next
: 2021.04.03 9:00 PM KST
- Object Detection : SPPNET details, Fast-RCNN overview (Chanju, James)
- https://blog.naver.com/laonple/220731472214 ( GooLeNet [6])
- https://blog.naver.com/laonple/220776743537 ( ResNet [4])
Will Cover
- SPP Net :
- What’s improved from R-CNN ? (idea, keywords)
- SPP Net flow (rough) (compared with R-CNN)
- SPP layer details (bin, BoW, how to calculate output)
- Practical training (Single-size, Multi-size training)
- Performance in fields (Classification, Detection)
- SPP Net Limits
- Fast R-CNN :
- what’s improved from SPP Net ? (idea, keywords)
- Fast R-CNN flow (rough) (compared with SPP Net)
- training Fast R-CNN (multi-task loss function, Hierarchical Sampling)
- test methods (truncated SVD)
- Fast R-CNN Limits
Future models of object detection : SPPNet
, Fast R-CNN
, Faster R-CNN
, YOLO v1
[2021.04.03]
Topic
: Lecture 13.3: Object Detection : SPPNET overview & details (Chanju, James)
Notes
:
- https://drive.google.com/file/d/1IQHx6BPhMwCURbBuw6QBcBeLk8YSUnZg/view?usp=sharing [Chanju]
- https://drive.google.com/file/d/1bQAmtjUexd1lbpZgRB_sKC8VOwPMs064/view?usp=sharing [James]
Links
:
SPP Net
- https://arxiv.org/pdf/1406.4729.pdf (original spp net thesis)
- https://driip.me/5743aed5-c630-4900-b367-9987a088661a (what is BoW approach in image?)
- https://n1094.tistory.com/30 (spp layer performance in classificaton & detection)
- https://blog.naver.com/laonple/220731472214 (Laon people, 내용 생략 심함)
- https://yeomko.tistory.com/14 (SPPnet 전반적 흐름 & 설명)
- https://www.youtube.com/watch?v=i0lkmULXwe0 (SPPnet 논문 강의 : 고려대학교 연구실)
- https://89douner.tistory.com/89 (SPPnet 보충 설명 , 자세한)
Fast R-CNN
- https://arxiv.org/pdf/1504.08083.pdf (original fast r-cnn thesis)
- https://fintecuriosity-11.tistory.com/73 (ablation study)
- https://yeomko.tistory.com/15 (how is end-to-end training possible?)
- https://deepsense.ai/region-of-interest-pooling-explained/ (spp vs roi pooling)
Next
: 2021.04.10 9:00 PM KST
- Object Detection : Fast R-CNN overview, details (Jaden , James)
- Fast R-CNN fine-tuning practice
Will Cover
- Fast R-CNN :
- what’s improved from SPP Net ? (idea, keywords)
- end-to-end
- softmax replacing svm
- ROI-pooling
- Fast R-CNN flow
- comapred with previous models
- training Fast R-CNN
- multi-task loss function
- Hierarchical Sampling ( vs. region-wise sampling)
- test methods (truncated SVD)
- Fast R-CNN Limits
- ResNet fine-tuning source code
[2021.04.10]
Topic
: Lecture 13.4: Object Detection : Fast R-CNN details, ResNet fine-tuning practice (James , Jaden)
Notes
:
- https://drive.google.com/file/d/1ari0YxYTqaH9mky2pKkPOO9p15gX1EBS/view?usp=sharing [James]
- https://drive.google.com/drive/folders/18WZeNJSrlOti07epXNy75Ws1s6U-Y-Q9?usp=sharing [Jaden]
Links
:
Fast R-CNN
- https://arxiv.org/pdf/1504.08083.pdf (original fast r-cnn thesis)
- https://fintecuriosity-11.tistory.com/73 (ablation study)
- https://yeomko.tistory.com/15 (how is end-to-end training possible?)
- https://deepsense.ai/region-of-interest-pooling-explained/ (spp vs roi pooling)
- https://ratsgo.github.io/deep%20learning/2017/04/05/CNNbackprop/ (backprops in CNN layer)
Res Net fine-tuning code
- https://www.tensorflow.org/hub/tutorials/tf2_object_detection
- https://detectron2.readthedocs.io/en/latest/_modules/detectron2/modeling/roi_heads/fast_rcnn.html
- https://github.com/facebookresearch/detectron2/blob/master/detectron2/modeling/roi_heads/fast_rcnn.py
- https://github.com/rbgirshick/py-faster-rcnn
Next
: 2021.04.24 9:00 PM KST
- Object Detection : Faster R-CNN overview,details (James)
Will Cover
- 자주 쓰게 될 서브 패키지 및 객체들
- 3가지 모델 작성 법
- 학습&테스트 과정 및 설정
[2021.04.24]
Topic
: Special Course 1.DNN_practice & keras overview from Colab (James)
Notes
:
Links
:
https://wikidocs.net/106897 (3-API)
https://jjeongil.tistory.com/953 (evaluate)
https://data-newbie.tistory.com/644 (performance visualization)
Next
: 2021.05.01 9:00 PM KST
- Inception module implementation from keras in Colab (Chloe)
- how to build Inception module with keras using Functional API method?
[2021.05.01]
Topic
: Special Course 2. Keras overview & implementation of Inception block on Colab (James)
Notes
:
Links
:
- 도큐먼트 짱
- https://wikidocs.net/106897 (3-API)
- https://jjeongil.tistory.com/953 (evaluate)
- https://data-newbie.tistory.com/644 (performance visualization)
- https://nevfiasco.tistory.com/6 (Inception block implementation)
Next
: 2021.05.08 9:00 PM KST
- Object Detection: Faster R-CNN (Chloe, James)
- What’s improved? (or suggested?)
- 키워드별로 개념만, 뒤에 세부내용이 별도로 나옴
RPN
, region proposal networks ( kind of FCN?)- Pyramids of images VS. Pyramids of filters VS.
Pyramids of Anchors
- Model architecture & Forward-pass (brief check)
- 마찬가지로 간단히
- how a single image passs through model
- All about RPN
- 자세히
- Inputs & Outputs
- Anchor Box
- what is Anchor box & what does translation-invariant means
- how to refer anchor box to regression
- Loss
- what loss function is defined on RPN?
- Train
- how to train RPN?
- How RPN and Detector share feature maps?
- alternating training?
- Implementation details
- 가능한 정도만
- used scales, anchor types
[2021.05.08]
Topic
: Lecture 13.5: Object Detection Faster R-CNN part1 (Chloe, James)
Notes
:
- https://drive.google.com/file/d/1–1Wj2JcrLcxMHPWoJNo24sPg2TAa-Go/view?usp=sharing [Chloe]
- https://drive.google.com/file/d/16bjfABuBK1J-ejQRYNgOLjT2Z-iiqiu2/view?usp=sharing [James]
Links
:
- https://arxiv.org/pdf/1506.01497.pdf (Faster R-CNN original thesis)
- https://www.youtube.com/watch?v=46SjJbUcO-c&t=1451s (기초개념 참고 유튜브 영상)
- https://deep-learning-study.tistory.com/464 (In/Out of RPN picture)
- https://herbwood.tistory.com/10 (Training RPN details, KR)
- https://www.telesens.co/2018/03/11/object-detection-and-classification-using-r-cnns/ (Training RPN details, EN)
- https://herbwood.tistory.com/11?category=867198 (코드로 이해하는 RPN)
- https://medipixel.github.io/post/2019-06-14-anchor-target/#ref_7 (코드로 이해하는 RPN loss)
- https://ganghee-lee.tistory.com/39 (FCN 참고자료 1)
- https://medium.com/hyunjulie/1%ED%8E%B8-semantic-segmentation-%EC%B2%AB%EA%B1%B8%EC%9D%8C-4180367ec9cb (FCN 참고자료 2)
Next
: 2021.05.15 9:00 PM KST
- Object Detection: Faster R-CNN part2 (Hayden, James)
- All about RPN
- Train (how to train RPN?)
- How RPN and Detector share feature maps?
- 4-step alternating training
- Implementation details
- 가능한 정도만
- used scales, anchor types
+ multibox approach (pyramids of filters)
+ understanding regression loss of RPN
스터디 RULE 수정
- 월/화 : 순서 변경이 필요한 팀원의 경우 화요일 저녁 전까지 다른 팀원에게 요청.
- 수: 해당 주 담당 팀원은 진행 정도 및 별도 준비가 필요한 부분을 James에게 전달.
[2021.05.15]
Topic
: Lecture 13.5: Object Detection Faster R-CNN part2 (Hayden, James)
Notes
:
- https://drive.google.com/file/d/1UdzLboCNc1Sda4ns83RVS-ar-JhcVCZl/view?usp=sharing [Hayden]
- https://drive.google.com/file/d/1OhM4QieuKMh_Nlv5WkWv0iZ4-MXBV_IK/view?usp=sharing [James]
Links
:
- https://herbwood.tistory.com/10 (Training RPN details, KR)
- https://www.telesens.co/2018/03/11/object-detection-and-classification-using-r-cnns/ (Training RPN details, EN)
- https://nuggy875.tistory.com/33 (Lreg term of RPN loss)
- https://ganghee-lee.tistory.com/37 (4-step alternating trainging of Faster R-CNN)
- https://ratsgo.github.io/deep%20learning/2017/04/05/CNNbackprop/ (remind of back-prop of maxpool layer)
Next
: 2021.05.22 9:00 PM KST
- Object Detection: YOLO v1 (Chanju, James)
[2021.05.23]
Topic
: Programmers ML Dev-matching 참여 (전원)
Notes
:
- https://programmers.co.kr/competitions/1109/2021-machinelearning [Programmers Link]
Links
:
None
Next
: 2021.05.29 9:00 PM KST
- Object Detection: YOLO v1 (Chloe, Chanju, James)
- What’s improved? (or suggested?)
- object-detection as single-regression problem
- three benefits over traditional models
- Architecture & Computation flow
- network design
- how raw image pass-through model (checking in/out of every layer)
- Train & Inference
- understanding each term of sum-squared error
- using
λcoord
,λnoobj
parameters- Limits & Comparison to other previous models
- limits : spatial constraint, small-object problem, coarse features, loss-balance
- comparison :
DPM
,Deep MultiBox
,OverFeat
,MultiGrasp
제외
[2021.05.29]
Topic
: Object Detection: YOLO v1 (Chloe, Chanju, James)
Notes
:
- https://drive.google.com/file/d/1WSqIcKwjyRALc4T3v0L3sBim5XuiSjkV/view?usp=sharing [Chanju]
- https://drive.google.com/file/d/18ITsaPJeyCBJVEUfjxaFFfgXxoiXjxk6/view?usp=sharing [James]
- https://drive.google.com/file/d/1-61pnmfN_boV-Xgif2br8nUWN2hEh6Ge/view?usp=sharing [Chloe]
Links
:
- https://arxiv.org/pdf/1506.02640.pdf (원 논문)
- https://jonathan-hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b1b93e2088 (how output of final fc layer is tensor, not vector? => reshape, EN)
- https://curt-park.github.io/2017-03-26/yolo/ (computation flow, KR)
- https://kevin970401.github.io/cnn/2019/08/19/detection.html (yolo limits, KR)
Next
: 2021.06.05 9:00 PM KST
- Recurrent Neural Network (Hayden, James)
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/readings/L14%20Recurrent%20Neural%20Nets.pdf
- 1.Introduction
- Tasks predicting ‘sequences’
- Neural Language Model to RNN
- 2.Recurrent Neural Nets
- unrolling network to understand like FFNN
- 3 examples of how parameter setting result in RNN
- 3.Backprop Through Time
- View as MLP backprop with unrolled computation-graph
- Comparing with MLP backprop
- 4.Sequence Modeling (what tasks can RNN be applied)
- Language Modeling
- Neural Machine Translation
- Learning to Execute Programs
[2021.06.05]
Topic
: Recurrent Neural Networks (Hayden, James)
Notes
:
- https://drive.google.com/file/d/1qP1_SBwEeFE8CQ0T_Pd9veb2H6JEVRbP/view?usp=sharing [Hayden]
- https://drive.google.com/file/d/1otSFBwYQcOD1dgZqup5ZhQkvX1HIalIW/view?usp=sharing [James]
Links
:
- https://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/readings/L14%20Recurrent%20Neural%20Nets.pdf (CSC321, EN)
- https://blog.naver.com/PostView.nhn?blogId=winddori2002&logNo=221974391796 (RNN computation flow, KR)
- https://curt-park.github.io/2017-03-26/yolo/ (computation flow, KR)
- http://bigdata.dongguk.ac.kr/lectures/TextMining/_book/%EC%96%B8%EC%96%B4-%EB%AA%A8%EB%8D%B8language-model.html (Language Modeling, KR)
- https://gruuuuu.github.io/machine-learning/lstm-doc/ (why tanh is used, not sigmoid nor relu ?, KR)
Next
: 2021.06.19 9:00 PM KST
- Long Short Term Memory Networks (Jaden, James)
- 1.Introduction
- Long-Term Dependency (gradient vanishing/exploding)
- introduction to 3 gates
- 2.LSTM forward computation flow
- what is calculated at each gate
- summarized behavior table
- 3.LSTM BPTT flow
- what to update?
- how cell-state is safe from GV,GE ?
- 4.Quick LSTM example (Tensorflow)
- Tensorflow Time-Series Tutorial
[2021.06.19]
Topic
: Long Short Term Memory (Jaden, James)
Notes
:
- https://drive.google.com/file/d/1aPc-tj2W3QxV3R_mPKn6V-LjWLxpnZto/view?usp=sharing [Jaden]
- https://drive.google.com/file/d/1Y3s4ZuPlsrW0PyZgQc2pVMyoLAzBvWz-/view?usp=sharing [James]
Links
:
- https://brunch.co.kr/@chris-song/9 (Long Term Dependency, KR)
- https://wegonnamakeit.tistory.com/7 (introduction to 3-gates, KR)
- https://ratsgo.github.io/natural%20language%20processing/2017/03/09/rnnlstm/ (LSTM BPTT figure, KR)
- https://brunch.co.kr/@chris-song/9 (BPTT equation, KR)
- http://blog.naver.com/PostView.nhn?blogId=apr407&logNo=221237917815&parentCategoryNo=&categoryNo=58&viewDate=&isShowPopularPosts=true&from=search (Vectorized Notation, KR)
- https://wegonnamakeit.tistory.com/7 (Peephole LTSM, KR)
- https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec16.pdf (Gate behavior table, EN)
- https://tykimos.github.io/2017/04/09/RNN_Layer_Talk/ (LSTM coding)
Next
: 2021.06.26 9:00 PM KST
- GRU part1(James)
- LSTM review & QnA
- 1.Introduction
- background - complex structure of LSTM
- introduction to 2 gates - Reset gate, Update gate
- 2.GRU forward computation flow
- what is calculated at each gate (how is it diff from LSTM?)
- understanding flow as human language
[2021.06.26]
Topic
: Gated Recurrent Units (James)
Notes
:
Links
:
- https://wiserloner.tistory.com/1112 (Why GRU was developed? , KR)
- https://yjjo.tistory.com/18 (introduction to gates in GRU , KR)
- https://m.blog.naver.com/PostView.naver?isHttpsRedirect=true&blogId=winddori2002&logNo=221992543837 (Computation flow details , KR)
- https://medium.com/@mihirkhandekar/forward-and-backpropagation-in-grus-derived-deep-learning-5764f374f3f5 (BPTT in GRU , EN)
- https://wikidocs.net/106473 (Recurrent Network code tutorial, KR)
Next
: 2021.07.03 9:00 PM KST
- GRU part 2(Chloe, James)